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MACROSCOPIC S_i_DY OF TIME UNSTEADY NOISE OF AN AIRCRAFT

ENGINE DURING STATIC TESTS

by B. J. Clark, M. F. Heidmann, m_d W. J. Kreim

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135

SUMMARY

Static tests of aircraft engines can exhibit greater than i0 dB ran-
dom unsteadiness of tone noise levels because flow disturbances that pre-

vail near test site facilities are ingested. Presumably such changes are

related to installation and test site features• This paper presents some _i

properties of unsteady 1_oise observed at a NASA-Lewis facility during

tests of a Lycoming YF-102 turbofan engine. Time and spatial variations 1
in tone noise obtained from closely spaced far-field and inlet duct micro-

phones are displayed. Long (0.5 sac) to extremely short (0.001 sec)
intermittent tone bursts are observed° Unsteadiness of the tone, its har-

monics, and the broadband noise show little similarity• In the far-field,

identity of tone bursts is retained over a directivity angle of less than
i0°. In the inlet duct, tone bursts appear to propagate axially but ex-

hibit little circumferential similarity_ They show only slight relation-

ship to tone bursts observed in the far field. The results imply an in-

termittent generation of random mixtures of propagating duct modes.

INTRODUCTION

An important current problem in the calculation of the noise levels
for an aircraft in flight is the amount and kind of correction to be

allowed for the effect of the "clean-up" in inlet flow on fan noise gen-

eration. Acoustic L_sts of turbofan engines for aircraft are typically

performed on a static test stand at various engine conditions. Appropri-
ate corrections must then be made when attempting to use this data to pre-

dict engine noise levels at various flight conditions.

Fan-generated tones, especially at the blade passing frequency (BPF),
arise from interaction of the rotor with inlet turbulence and vortices re-

sulting in pressure disturbances on the rotor blade surfaces (refs. 1
and 2), and from "rotor-stator interaction" as the rotating wakes from

• . Duringthe rotor blades impinge on the stator blade surfaces (ref 3)

static testing, the noise levels due to inflow disturbances can be very

high, depending on the local air turbulence and induced vertices caused

by the particular test site and installation (refs. 4 to 6). In testing

quiet fans designed to minimize rotor-stator interaction noise (tel. 7),

i inflow distortion noise becomes thr dominant noise source. The noise ad-
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vantages of designing for "cut-off" of certain tones cannot be evaluated

solely by static testing unless inlet flow disturbances can be eliminated
or minimized (ref. 8_ In some cases of static testing Cref. 9}, fine

screens have been installed across the flow approaching the bellmouth in-

let in an attempt to attenuate local turbulence and vortices.

In the NASA Reran Program, acoustic measurements in the inlet duct

of the JTSD-109 engine demonstrated a high degree of variability in the

BPF tone level in static testing (ref. 5)° However, during flight the
BPF tone level was relatively steady. Other evidence pointing to the

time-unsteadiness in these tones comes from experience in spectral analy-

sis of engine noise data° Some experimentors use averaging times as long
as 30 seconds in an attempt to obtain stationary averages for tone levels.

Averaging times of a few seconds may show as much as 5 decibels variation
in BPF tone levels during a constant-speed run.

During acoustic and aerodynamic performance evaluation of a high by-
pass turbofan engine on a static test stand at Lewis Research Center

(Fig. i)_ observations made by ear while walking around the engine indi-
cated that there might be narrow lobes of intense sound which could be
missed by microphones placed at lO degree intervals. However, it was im-

possible to distinguish between spatial fluctuations and time fluctuations

in the tones. Accordingly, for the results in this paper, the intense

region of the inlet noise field was monitored by microphones spaced at
2 degree intervals° The tape-recorded signals from these microphones and !from microphones in the engine inlet duct were then time-expanded to re-
veal the nature of the time fluctuations at each point.

The purpose of this paper is to display these time and spatial fluc-

tuations in some detail in the hope it will lead to better understanding
of those processes which cause elevated tone levels in static acoustic

testing of fans.

TEST DESCRIPTION

Turbofan engine. - The acoustic data were obtained during a Lewis

Research Center test program to evaluate the acoustic and aerodynamic

characteristics of the AVCO-Lycomlng YFI02 engine. Four of these engines
will be used in the Quiet Short-Haul Research Aircraft being built for

Ames Research Center. The engine (fig. i) consists of a modified T-55

core driving a 6:1 bypass-ratio fan exhausting through a separate flow
nozzle The fan stage has 40 rotor blades and 85 stator vanes. The

fundamental blade passing tone due to _otor-stator _nteraction is ¢_it-

i off below about 6650 rpm, while that due to rotor-alone is cut-o_f below

5740 rpm (fig. 2)_ Fo_ the results shown in this paper, fan speeds were
limited to approximately 3800 rpm. Relative Mach number of the flow at

the blade tips is subsonic below about b400 rpm. After the fan the core

flow goes through a supercharger stage with 90 rotor b]ades.

s
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For static testing the engine inlet was cylindrical, terminating
with a bellmouth_ Within the cylindrical inlet duct, three ]/4-inch

microphones were flush-mounted at a two-inch spacing alined ¢ircumferen-
Lially and axially (fig_ 3),

Acoustic arena, - In addition to the duct microphones, far-field

microphones were distributed on a lO0-foot arc as shown in figure 3.
Microphones were placed on the ground to avoid ground reflection inter-
ference. Between 30° and 50° from the inlet axis microphones were spaced

at 2 degree intervals in order to detect any narrow lobes of sound in

this region.

All far-fleld microphones were 1/2-inch diameter condenser type

with a frequency response flat (±2 dB) to 20 kilohertz.I
I

The outputs of the microphone amplifiers were FM-recorded simul-

taneously on two 14-channel tapes. Standard IRIG time code was also re-

corded on both machines so that good time correlation could be maintained.

Acoustic analysis. - To obtain detail of the fluctuating tone levels,
the acoustic data tapes were played back at slower speeds to give time

expansion factors of up to 32. Tape outputs were filtered through a

standard Bruel and Kjaer i/3-octave and/or one-octave filter. For com-

Si nai I [
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i/3-octave i 1-octave i
filter _ filter ,
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• Multi-
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Time recorder

parison of the slower fluctuation characteristics, the output from the

i/3-octave filter was converted to a slowly varying d.c. signal by a

i: Bruel and Kjaer RMS amplifier output. The frequency response was l:[mited

by the RMS circuit to about 20 Hz,, Signals were recorded at various
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paper speeds on a Brush multi-channel recorder. The one-kilohertz carrier
of the IRIG time code was recorded simultaneously witb each data sample.

The sample time traces shown in the figures of this paper are representa-
tive and are selected from the same time interval during the run.

The time-averaged spectra were taken from the FM tape recording

using standard analyzers. The sound pres_.,re levels (SPL) for the

1/3-octave spectrum were derived from 12-second averages of the signals.
The narrow band (60 Hz bandwidth) spectrum was obtained from a 500-11ne

analyzer using 128 ensemble averages.

RESULTS AND DISCUSSION

Time-averaged data. - At intermediate speeds or power settings, the

YFI02 engine generates noise typical of a high bypass-ratio turbofan

engine. The fan tip speed is subsonic and jet velocity is moderate)

hence the spectrum consists of broadband fan and internal noises with fan
and turbine tones superimposed (figs. 4 and 5). The most prominent far-

field tone at these speeds is the blade passing tone, as shown by both

i/3-octave and narrow-band spectra for the microphone at 40 degrees from

the engine inlet. The narrow-band spectrum shows that tones from the fan

and supercharger are the main contribution to the high frequency region
of the spectrum° (Note that a one-octave filter bracketing the BPF tone

will not pass the higher harmonics°) The higher fall-off in the high

frequency region of the far-fleld spectrum relative to the In-duct spec-
trum is mainly due to atmospheric attenuation, for which no correction

is made in these examples°

The closely spaced microphones used for these experiments are able
to distinguish some finer variation in directionality (fig. 6) than would

be shown by microphones at the usual i0 degree spacing intervals. The

i/3-octave BPF tone level has a similar directionality pattern to the

overall noise level. Although the data show variations with angle of

several decibels, no clear lobe pattern is evident in these time-averaged
values. The prominence of the noise in the region of 20 to 40 deg£ees
is obvious_

Time fluctuations. - In figure 7 samples of the time fluctuations
in the i/3-octave and one-octave filtered BPF tones are shown for the

40 degree microphone. Pressure traces of the filtered microphone output

are displayed at several time expansions, with brackets to indicate the

period of time common to all expansions. The average i/3-octave SPL at
40 degrees for this condition is 92 dB Note that the period of the fluc-

tuations ranges from on the order of one second to about a millisecond.

In fact, the traces from the one-octave filter even show appreclab]e di[-

ferences between adJaceDt peaks Both slow and fast fluctuations are of

very high amplitude (doubling tileamplitude corresponds to a 6 dB in-
crease in level). There are many instances of rapid change, where the

A
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level changes at a rate of i0 dB or more per millisecond. _le bursts

appear random in both tile long term and short term. In some instances

cancellations may be occurring giving briefly a local amplitude of zero,

Time fluctuations in the 40 degree microphone and in the near-field

signals obtained by microphones in the inlet duct wall are compared at

high and _ow time expansions in figuras 8(a) and (b). The individual

curves do not have matching grids because they were recorded separately _

and assembled by means of the recorded time code signal. The fluctuation _j
phenomena look similar in these duct and far-field signals, in that the

amplitude of the fluctuations and their period or scale are of the same

order. However, detailed comparisons of the phasing and character of

individual bursts show that they are mostly unrelated (transit time from

the near field to far field is approximately 0.i sec). Whereas the axi-

ally alined microphones (#2 and #3) are similar in fluctuations, the cir-

cumferentially alined pair (#i and #2) show little similarity, particu-

larly when viewed at the greater time expansion. It should be noted that

when averaged over several seconds, the three duct microphone outputs are

essentially the same.

The surprising lack of similarity in acoustic signals from two micro-

phones spaced circumferentially only two inche_ apart can be rationalized

in two ways. In terms of distributed random sources across the fan face,

the sources propagate primarily axially with random interference (con-

structive or destructive) at various points around the circumference.

Hence, the observed tone bursts at two circumferential stations are un-

related. In terms of acoustic modes present in the duct, the modal prop-

agation is mainly axial rather than spiral. At least parts of the modal

content must he random in phase and/or amplitude, so that two distinct

but proximate points see unrelated patterns of interference between modal
mixtures.

Figure 8(c) demonstrates a time trace of the RMS level of the BPF-

tone i/3-octave band from these same 40-degree and duct microphones. Be-

cause of the reduced tape playback speed, the RMS converter circuit is

able to faithfully follow fluctuations in pressure amplitude up to rates

somewnat above i00 hertz. The correspondence between the RMS output and

the filtered pressure trace appears very good at low frequencies.

The next question is whether or not the fluctuations in the near

field (inlet duct) appear to have any relationship to fluctuations some- .!
where in the far field_ Comparisons at low frequencies (larger scale

_. disturbances) are facilitated by using the RMS of the tones. In £igure 9 !

the RMS levels of a duct microphone and all tile far field microphones are 1
m displayed for comparison. For the limited number of locations in the in-

i
let and in the plane of the ground microphones, there is very little rec-

ognizable commonality_ Amo_g the far-field microphones, major "evcnts"

causing large perturbations in one microphone can be recognized only in t

adjacent microphones within about _6 degrees._ Even in adjacent micro-
phones (wlt_1a 2 degree, or approximately 3_-foot separatism on a I00-
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foot radius), there is considerable difference in the character and

: amplitude of the fluctuations. Thus, although no strong lobes were appar-

• ent in the time-averaged acoustic data, the random tone bursts seem to be

concentrated in narrow lobes randomly distributed in the inlet region of
the acoustic far field.

Fluctuations in the BPF third harmonic and in the BPF tone are shown

in figure i0 along with the unfiltered pressure signal. At the third
harmonic the filter bandwidth is three times as wide as at the funda-

mental, allowing more rapid fluctuations to pass than in the BPF filter,

Amplitude of the harmonic fluctuations is much lower than of the BPF,

and there seems to be no similarity to the BPF fluctuations. It may be
that at this fan speed the third harmonic fluctuations are somewhat masked

by the sum tone of the supercharger and fan stage fundamentals, which

falls within the same i/3-octave band (fig. 5).
I

The relationship bctweeL_ dl_ broadband L_oise level and the BPF tone
level is shown in figure ii. The broadband level chosen for illustration Iis the i/3-octave filter output at 0_64 BPF (two i/3-octave bands below
BPF) o The narrower bandwidth limits the rate of fluctuation in the fil-

ter output. Comparison of the broadband and tone fluctuations indicates

that the perturbations generating tone bursts are not related to the
broadband noise level.

CONCLUDING REMARKS

Several observations should be made about these data:

i. The signals shown are highly variable in both time and space.

The duration of a tone burst is often less than the propagation time as

an acoustic wave to the upstream end of the inlet. Some large fluctua-

tions persist for only a few cycles of blade passing tone. Adjacent

closely spaced microphones in the far field frequently show large differ-
ences in their time histories. Therefore, whatever acoustic modes exist

in the inlet duct must have correspondingly large temporal and spatial
variability in their strengths. Some of this may be due to random con-
structlve and destructive interference between modes.

2. In view of the observed high degree of variability, tlme-averaged

tone levels in the far-field may not correspond to any specific modes In

the inlet at any time. Rather, far-fleld patterns represent the effect

of averaging the instantaneous sum of the far-field pressures produced by
various short-llved modes in the inlet duct

3_ The same kind of fluctuations occur in all the signals, so that

comparisons made between tlme-averages are meaningful.

4. The effects are probably unique to static testing at or near the

ground; scales and amplitude may vary with features of the test site.

" 1977004109-TSA08
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5. The results presented herein are intended to stimulate more in-

vestigation and to caution analysts on the use of averaged data obtained
in static tests,,
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Figure1. -Turbofa,_ enginein teststandat LewisResearchCenter.
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Figure3. - Locationsofnear-fleldandfar-fieldmicrophones.
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Figure9. - Comparisonsof RMSofBPFtonesInnear-fieldandfar-fieldmicrophones.
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